Effects of silver nanoparticles on human health

19 Mar.,2024

 

This work was supported by the Tehran University of Medical Sciences.

References

1. Kim HS, Ryu JH, Jose B, Lee BG, Ahn BS, Kang YS. Formation of silver nanoparticles induced by poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 2001;17:5817–20.10.1021/la010677fSearch in Google Scholar

2. Besinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology 2014;8:745–54.Search in Google Scholar

3. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T. General method of synthesis for metal nanoparticles. J Nanopart Res 2004;6:411–4.10.1007/s11051-004-6575-2Search in Google Scholar

4. Bansal V, Bharde A, Ramanathan R, Bhargava SK. Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 2012;179–182:150–68.10.1016/j.cis.2012.06.013Search in Google Scholar PubMed

5. Bai HJ, Yang BS, Chai CJ, Yang GE, Jia WL, Yi ZB. Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World J Microb Biotech 2011;27:2723–8.10.1007/s11274-011-0747-xSearch in Google Scholar

6. Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2011;84:462–6.10.1016/j.colsurfb.2011.01.042Search in Google Scholar PubMed

7. Soni N, Prakash S. Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res 2012;111:2091–8.10.1007/s00436-012-3056-xSearch in Google Scholar PubMed

8. Barwal I, Ranjan P, Kateriya S, Yadav SC. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnology 2011;9:56.10.1186/1477-3155-9-56Search in Google Scholar PubMed PubMed Central

9. Antony JJ, Sivalingam P, Siva D, Kamalakkannan S, Anbarasu K, Sukirtha R, et al. Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf B Biointerfaces 2011;88:134–40.10.1016/j.colsurfb.2011.06.022Search in Google Scholar PubMed

10. Fayaz AM, Girilal M, Venkatesan R, Kalaichelvan PT. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf B Biointerfaces 2011;88:287–91.10.1016/j.colsurfb.2011.07.003Search in Google Scholar PubMed

11. Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 2011;20:543–9.10.12968/jowc.2011.20.11.543Search in Google Scholar PubMed

12. Edwards-Jones V. The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 2009;49:147–52.10.1111/j.1472-765X.2009.02648.xSearch in Google Scholar PubMed

13. Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 2014;65:509–15.10.1016/j.ijbiomac.2014.01.071Search in Google Scholar PubMed

14. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3:95–101.10.1016/j.nano.2006.12.001Search in Google Scholar PubMed

15. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2013;52:1636–53.10.1002/anie.201205923Search in Google Scholar PubMed

16. Yu H, Xu X, Chen X, Lu T, Zhang P. Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. Journal of Applied Polymer Science 2007;103:125–33.10.1002/app.24835Search in Google Scholar

17. Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, et al. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 2010;44:7321–8.10.1021/es100854gSearch in Google Scholar PubMed

18. Musee N, Thwala M, Nota N. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 2011;13:1164–83.10.1039/c1em10023hSearch in Google Scholar PubMed

19. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346–53.10.1088/0957-4484/16/10/059Search in Google Scholar PubMed

20. Sibbald RG, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K. Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care 2007;20:549–58.10.1097/01.ASW.0000294757.05049.85Search in Google Scholar PubMed

21. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 2011;39:194–9.10.5941/MYCO.2011.39.3.194Search in Google Scholar PubMed PubMed Central

22. Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 2012;279:1327–38.10.1111/j.1742-4658.2012.08527.xSearch in Google Scholar

23. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology 2012;40:53–8.10.5941/MYCO.2012.40.1.053Search in Google Scholar

24. Nam KY, Lee CH, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 2012;29:e413–9.10.1111/j.1741-2358.2011.00489.xSearch in Google Scholar

25. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 2009;43:715–23.10.1016/j.watres.2008.11.014Search in Google Scholar

26. Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 2011;109:823–31.10.1007/s00436-011-2328-1Search in Google Scholar

27. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 2003;27:341–53.10.1016/S0168-6445(03)00047-0Search in Google Scholar

28. Mukha Iu P, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, et al. Antimicrobial activity of stable silver nanoparticles of a certain size. Prikl Biokhim Mikrobiol 2013;49:215–23.10.1134/S0003683813020117Search in Google Scholar

29. Pokrowiecki R, Zareba T, Mielczarek A, Opalińska A, Wojnarowicz J, Majkowski M, et al. Evaluation of biocidal properties of silver nanoparticles against cariogenic bacteria. Med Dosw Mikrobiol 2013;65:197–206.Search in Google Scholar

30. Priester JH, Singhal A, Wu B, Stucky GD, Holden PA. Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa. Analyst 2014;139:954–63.10.1039/C3AN01648JSearch in Google Scholar PubMed

31. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007;3:168–71.10.1016/j.nano.2007.02.001Search in Google Scholar PubMed

32. Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, et al. Antibacterial properties of silver-doped titania. Small 2007;3:799–803.10.1002/smll.200600481Search in Google Scholar PubMed

33. Naqvi SZ, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, et al. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine 2013;8:3187–95.10.2147/IJN.S49284Search in Google Scholar PubMed PubMed Central

34. Miller JH, Novak JT, Knocke WR, Young K, Hong Y, Vikesland PJ, et al. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion. Water Environ Res 2013;85:411–21.10.2175/106143012X13373575831394Search in Google Scholar

35. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces 2013;108:255–9.10.1016/j.colsurfb.2013.03.017Search in Google Scholar PubMed

36. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 2013;26:609–21.10.1007/s10534-013-9645-zSearch in Google Scholar PubMed

37. Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 2013;39:373–83.10.3109/1040841X.2012.713323Search in Google Scholar PubMed

38. Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 2014;35:4601–9.10.1016/j.biomaterials.2014.02.033Search in Google Scholar PubMed

39. Cheng H, Li Y, Huo K, Gao B, Xiong W. Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J Biomed Mater Res A 2014;102:3488–99.10.1002/jbm.a.35019Search in Google Scholar PubMed

40. Liao J, Anchun M, Zhu Z, Quan Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomedicine 2010;5:337–42.Search in Google Scholar

41. Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014;8:1–16.10.3109/17435390.2012.742935Search in Google Scholar PubMed PubMed Central

42. Zhang YY, Sun J. A study on the bio-safety for nano-silver as anti-bacterial materials. Zhongguo Yi Liao Qi Xie Za Zhi 2007;31:36–8, 16.Search in Google Scholar

43. Wang GL, Xu XF, Qiu L, Dong YM, Li ZJ, Zhang C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl Mater Interfaces 2014;6:6434–42.10.1021/am501830vSearch in Google Scholar PubMed

44. Kuhnel D, Nickel C. The OECD expert meeting on ecotoxicology and environmental fate – towards the development of improved OECD guidelines for the testing of nanomaterials. Sci Total Environ 2014;472:347–53.10.1016/j.scitotenv.2013.11.055Search in Google Scholar PubMed

45. Lowry GV, Hotze EM, Bernhardt ES, Dionysiou DD, Pedersen JA, Wiesner MR, et al. Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 2010;39:1867–74.10.2134/jeq2010.0297Search in Google Scholar PubMed

46. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, et al. Release of silver nanoparticles from outdoor facades. Environ Pollut 2010;158:2900–5.10.1016/j.envpol.2010.06.009Search in Google Scholar PubMed

47. Blaser SA, Scheringer M, Macleod M, Hungerbuhler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 2008;390:396–409.10.1016/j.scitotenv.2007.10.010Search in Google Scholar PubMed

48. Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008;19:255102.10.1088/0957-4484/19/25/255102Search in Google Scholar PubMed

49. Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T, et al. Effects of particle size and coating on nanoscale Ag and TiO(2) exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 2013;7:1315–24.10.3109/17435390.2012.737484Search in Google Scholar PubMed

50. van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 2013;47:8005–14.10.1021/es401758dSearch in Google Scholar PubMed PubMed Central

51. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007;1:133–43.10.1021/nn700048ySearch in Google Scholar PubMed PubMed Central

52. Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology 2012;6:667–9.10.3109/17435390.2011.600840Search in Google Scholar PubMed

53. Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 2005;49:575–85.Search in Google Scholar

54. Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv 2014;11:1087–101.10.1517/17425247.2014.913568Search in Google Scholar PubMed

55. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001;175:191–9.10.1006/taap.2001.9240Search in Google Scholar PubMed

56. Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007;19:849–56.10.1080/08958370701479323Search in Google Scholar PubMed

57. Xiong Y, Brunson M, Huh J, Huang A, Coster A, Wendt K, et al. The role of surface chemistry on the toxicity of Ag nanoparticles. Small 2013;9:2628–38.10.1002/smll.201202476Search in Google Scholar PubMed

58. Wang X, Ji Z, Chang CH, Zhang H, Wang M, Wang M, et al. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 2014;10:385–98.10.1002/smll.201301597Search in Google Scholar PubMed PubMed Central

59. Georgantzopoulou A, Balachandran YL, Rosenkranz P, Dusinska M, Lankoff A, Wojewodzka M, et al. Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology 2013;7:1168–78.10.3109/17435390.2012.715312Search in Google Scholar PubMed

60. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 2010;4:319–30.10.3109/17435390.2010.483745Search in Google Scholar PubMed

61. Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA. Toxicity of silver nanoparticles in macrophages. Small 2013;9:2576–84.10.1002/smll.201202120Search in Google Scholar PubMed

62. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 2012;28:2727–35.10.1021/la2042058Search in Google Scholar PubMed

63. Maurer EI, Sharma M, Schlager JJ, Hussain SM. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Nanotoxicology 2014;8:718–27.Search in Google Scholar

64. Yue Y, Behra R, Sigg L, Fernandez Freire P, Pillai S, Schirmer K. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 2014.10.3109/17435390.2014.889236Search in Google Scholar PubMed

65. Groh KJ, Dalkvist T, Piccapietra F, Behra R, Suter MJ, Schirmer K. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 2013.10.3109/17435390.2014.893379Search in Google Scholar PubMed

66. Jiang X, Miclaus T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 2014.10.3109/17435390.2014.907457Search in Google Scholar PubMed

67. Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. Biomaterials 2010;31:8350–61.10.1016/j.biomaterials.2010.07.045Search in Google Scholar PubMed

68. Seaton A, Tran L, Aitken R, Donaldson K. Nanoparticles, human health hazard and regulation. J R Soc Interface 2009;7(Suppl 1):S119–29.10.1098/rsif.2009.0252.focusSearch in Google Scholar PubMed PubMed Central

69. Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 2012;32:890–9.10.1002/jat.2742Search in Google Scholar PubMed

70. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczyńska A, Chwastowska J, et al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 2012;32:920–8.10.1002/jat.2758Search in Google Scholar PubMed

71. Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 2011;34:153–8.10.1007/s12272-011-0118-zSearch in Google Scholar PubMed

72. Lee Y, Kim P, Yoon J, Lee B, Choi K, Kil KH, et al. Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology 2013;7:1120–30.10.3109/17435390.2012.710660Search in Google Scholar PubMed

73. Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. Chemical transformations of nanosilver in biological environments. ACS Nano 2012;6:9887–99.10.1021/nn303449nSearch in Google Scholar PubMed PubMed Central

74. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 2012;46:7027–36.10.1021/es204608dSearch in Google Scholar PubMed

75. Liu J, Pennell KG, Hurt RH. Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 2011;45:7345–53.10.1021/es201539sSearch in Google Scholar PubMed PubMed Central

76. Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. J Hazard Mater 2011;192:299–306.10.1016/j.jhazmat.2011.05.024Search in Google Scholar PubMed

77. Wadhera A, Fung M. Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 2005;11:12.10.5070/D30832G6D3Search in Google Scholar

78. Wright JB, Lam K, Buret AG, Olson ME, Burrell RE. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 2002;10:141–51.10.1046/j.1524-475X.2002.10308.xSearch in Google Scholar PubMed

79. Lam PK, Chan ES, Ho WS, Liew CT. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci 2004;61:125–7.10.1080/09674845.2004.11732656Search in Google Scholar PubMed

80. Filon FL, D’Agostin F, Crosera M, Adami G, Rosani R, Romano C, et al. In vitro percutaneous absorption of silver nanoparticles. G Ital Med Lav Ergon 2007;29:451–2.Search in Google Scholar

81. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009;255:33–7.10.1016/j.tox.2008.09.025Search in Google Scholar PubMed

82. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 2010;118:407–13.10.1289/ehp.0901398Search in Google Scholar PubMed PubMed Central

83. Korani M, Rezayat SM, Arbabi Bidgoli S. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res 2013;12:511–9.Search in Google Scholar

84. Korani M, Rezayat SM, Gilani K, Arbabi Bidgoli S, Adeli S. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine 2011;6:855–62.10.2147/IJN.S17065Search in Google Scholar PubMed PubMed Central

85. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1–12.10.1016/j.toxlet.2007.10.004Search in Google Scholar PubMed

86. El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009;2009:754810.10.1155/2009/754810Search in Google Scholar PubMed PubMed Central

87. Paddle-Ledinek JE, Nasa Z, Cleland HJ. Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 2006;117:110S–8S; discussion 9S–20S.10.1097/01.prs.0000225439.39352.ceSearch in Google Scholar PubMed

88. Tredget EE, Shankowsky HA, Groeneveld A, Burrell R. A matched-pair, randomized study evaluating the efficacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 1998;19:531–7.10.1097/00004630-199811000-00013Search in Google Scholar PubMed

89. Deng F, Olesen P, Foldbjerg R, Dang DA, Guo X, Autrup H. Silver nanoparticles up-regulate Connexin43 expression and increase gap junctional intercellular communication in human lung adenocarcinoma cell line A549. Nanotoxicology 2010;4:186–95.10.3109/17435390903576451Search in Google Scholar PubMed

90. Song KS, Sung JH, Ji JH, Lee JH, Lee JS, Ryu HR, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology 2013;7:169–80.10.3109/17435390.2011.648223Search in Google Scholar PubMed

91. Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, et al. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 2011;8:5.10.1186/1743-8977-8-5Search in Google Scholar PubMed PubMed Central

92. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 2008;20:567–74.10.1080/08958370701874671Search in Google Scholar PubMed

93. Kaewamatawong T, Banlunara W, Maneewattanapinyo P, Thammachareon C, Ekgasit S. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses. J Environ Pathol Toxicol Oncol 2014;33:59–68.10.1615/JEnvironPatholToxicolOncol.2014010179Search in Google Scholar PubMed

94. Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 2013;47:11232–40.10.1021/es403377pSearch in Google Scholar PubMed PubMed Central

95. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 2014;11:11.10.1186/1743-8977-11-11Search in Google Scholar PubMed PubMed Central

96. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012;6:7427–42.10.1021/nn302649pSearch in Google Scholar PubMed

97. Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol 2013;68:1–7.10.1016/j.yrtph.2013.11.002Search in Google Scholar PubMed

98. Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch Toxicol 2010;84:63–9.10.1007/s00204-009-0469-0Search in Google Scholar PubMed

99. Melnik EA, Buzulukov YP, Demin VF, Demin VA, Gmoshinski IV, Tyshko NV, et al. Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae 2013;5:107–15.10.32607/20758251-2013-5-3-107-115Search in Google Scholar

100. Platonova TA, Pridvorova SM, Zherdev AV, Vasilevskaya LS, Arianova EA, Gmoshinski IV, et al. Identification of silver nanoparticles in the small intestinal mucosa, liver, and spleen of rats by transmission electron microscopy. Bull Exp Biol Med 2013;155:236–41.10.1007/s10517-013-2122-4Search in Google Scholar PubMed

101. Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicová D, Wallin H, et al. In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology 2013;7:301–13.10.3109/17435390.2011.653416Search in Google Scholar PubMed

102. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001;109(Suppl 4):547–51.10.1289/ehp.01109s4547Search in Google Scholar PubMed PubMed Central

103. Tiwari DK, Jin T, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Method 2011;21:13–24.10.3109/15376516.2010.529184Search in Google Scholar PubMed

104. Kulthong K, Maniratanachote R, Kobayashi Y, Fukami T, Yokoi T. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 2012;42:854–62.10.3109/00498254.2012.670312Search in Google Scholar PubMed

105. Christen V, Fent K. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 2012;87:423–34.10.1016/j.chemosphere.2011.12.046Search in Google Scholar PubMed

106. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011;201:92–100.10.1016/j.toxlet.2010.12.010Search in Google Scholar PubMed

107. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008;179:130–9.10.1016/j.toxlet.2008.04.015Search in Google Scholar PubMed

108. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013;33:78–89.10.1002/jat.2792Search in Google Scholar PubMed

109. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2007;19:857–71.10.1080/08958370701432108Search in Google Scholar PubMed

110. Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 2009;43:6046–51.10.1021/es900754qSearch in Google Scholar PubMed

111. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008;20:575–83.10.1080/08958370701874663Search in Google Scholar PubMed

112. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 2009;9:4924–32.10.1166/jnn.2009.1269Search in Google Scholar PubMed

113. Rosenman KD, Moss A, Kon S. Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Med 1979;21:430–5.Search in Google Scholar

114. Mahabady M. The evaluation of teratogenicity of nanosilver on skeletal system and placenta of rat fetuses in prenatal period. Afr J Pharm Pharmacol 2012;6:419–24.Search in Google Scholar

115. González C, Salazar-García S, Palestino G, Martínez-Cuevas PP, Ramírez-Lee MA, Jurado-Manzano BB, et al. Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: role of nitric oxide. Toxicol Lett 2011;207:306–13.10.1016/j.toxlet.2011.09.024Search in Google Scholar PubMed

116. Zieminska E, Stafiej A, Struzynska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology 2014;315:38–48.10.1016/j.tox.2013.11.008Search in Google Scholar PubMed

117. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, et al. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 2010;118:160–70.10.1093/toxsci/kfq244Search in Google Scholar PubMed

118. Lansdown AB. Critical observations on the neurotoxicity of silver. Crit Rev Toxicol 2007;37:237–50.10.1080/10408440601177665Search in Google Scholar PubMed

119. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 2006;92:456–63.10.1093/toxsci/kfl020Search in Google Scholar PubMed

120. Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 2004;62:1408–10.10.1212/01.WNL.0000120671.73335.ECSearch in Google Scholar

121. Miresmaeili SM, Halvaei I, Fesahat F, Fallah A, Nikonahad N, Taherinejad M. Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. Iran J Reprod Med 2013;11:423–30.Search in Google Scholar

122. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 2010;116:577–89.10.1093/toxsci/kfq148Search in Google Scholar PubMed PubMed Central

123. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005;88:412–9.10.1093/toxsci/kfi256Search in Google Scholar PubMed PubMed Central

124. Garcia TX, Costa GM, Franca LR, Hofmann MC. Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod Toxicol 2014;45C:59–70.10.1016/j.reprotox.2014.01.006Search in Google Scholar PubMed PubMed Central

125. Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S, et al. Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology 2012;6:912–22.10.3109/17435390.2011.626539Search in Google Scholar PubMed

126. Hong JS, Kim S, Lee SH, Jo E, Lee B, Yoon J, et al. Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology 2014;8:349–62.10.3109/17435390.2013.780108Search in Google Scholar PubMed

127. De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 2013;34:8333–43.10.1016/j.biomaterials.2013.06.048Search in Google Scholar PubMed

128. Buzea C, Pacheco, II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:MR17–71.10.1116/1.2815690Search in Google Scholar PubMed

129. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823–39.10.1289/ehp.7339Search in Google Scholar PubMed PubMed Central

130. Shin SH, Ye MK, Kim HS, Kang HS. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 2007;7:1813–8.10.1016/j.intimp.2007.08.025Search in Google Scholar PubMed

131. Heydarnejad MS, Rahnama S, Mobini-Dehkordi M, Yarmohammadi P, Aslnai H. Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus) through suppression of innate immune system. Nanomedicine J 2014;1:79–87.Search in Google Scholar

132. Chi Z, Liu R, Zhao L, Qin P, Pan X, Sun F, et al. A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta A Mol Biomol Spectrosc 2009;72:577–81.10.1016/j.saa.2008.10.044Search in Google Scholar PubMed

133. Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 2009;20:085102.10.1088/0957-4484/20/8/085102Search in Google Scholar PubMed

134. Demir E, Vales G, Kaya B, Creus A, Marcos R. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 2011;5:417–24.10.3109/17435390.2010.529176Search in Google Scholar PubMed

135. Schmaehl D, Steinhoff D. Studies on cancer induction with colloidal silver and gold solutions in rats. Z Krebsforsch 1960;63:586–91.Search in Google Scholar

136. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009;53:52–62.10.1016/j.yrtph.2008.10.008Search in Google Scholar PubMed

137. Furst A, Schlauder MC. Inactivity of two noble metals as carcinogens. J Environ Pathol Toxicol 1978;1:51–7.Search in Google Scholar

138. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 2011;85:743–50.10.1007/s00204-010-0545-5Search in Google Scholar PubMed

139. Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y, et al. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 2013;222:55–63.10.1016/j.toxlet.2013.07.011Search in Google Scholar PubMed

140. Guo D, Zhao Y, Zhang Y, Zhou H, Ge Y, Ma W, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol 2014;10:669–78.10.1166/jbn.2014.1625Search in Google Scholar PubMed

141. Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013;34:7884–94.10.1016/j.biomaterials.2013.07.015Search in Google Scholar PubMed

142. Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 2012;7:2767–81.Search in Google Scholar

143. Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, et al. Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010;4:284–95.10.3109/17435391003690549Search in Google Scholar PubMed

144. Korani M, Rezayat SM, Ghamami SG. Silver nanoparticle induced muscle abnormalities: a sub-chronic dermal assessment in guinea pig. J Pharmaceut Health Sci 2012;1:21–9.Search in Google Scholar

With high quality products and considerate service, we will work together with you to enhance your business and improve the efficiency. Please don't hesitate to contact us to get more details of nano silver benefits.